skip to main content


Search for: All records

Creators/Authors contains: "Su, Hsin-Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Chemically recyclable polymers offer a promising solution to address the issues associated with the unsustainable use of plastics by converting the traditional linear plastic economy into a circular one. Central to developing chemically recyclable polymers is to identify the appropriate monomers that enable practical conditions for polymerization and depolymerization and ensure useful stability and material properties. Our group has recently demonstrated thattrans‐cyclobutane‐fused cyclooctene (tCBCO) meets the abovementioned requirements and is a promising candidate for developing chemically recyclable polymers. Herein, encouraged by the success withtCBCO, we investigate the thermodynamics of polymerization of a relevant system,trans‐benzocyclobutene‐fused‐cyclooctene, which can be viewed astCBCO with an additional benzene ring. The study shows that introducing an additional benzene ring favors polymerization and disfavors depolymerization, and the effect is predominantly entropic. The benzo‐effect can be leveraged to fine‐tune the thermodynamics of polymerization and depolymerization to facilitate the chemical recycling of polymers.

     
    more » « less